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What is object detection?



What is object detection?



Detection - Evaluation Criteria

Average Precision (AP) and mAP

Figures are from wikipedia



Detection - Evaluation Criteria

mmAP

Figures are from http://cocodataset.org



How to perform a detection?

• Sliding window: enumerate all the windows (up to millions of windows)
• VJ detector: cascade chain

• Fully Convolutional network
• shared computation

Robust Real-time Object Detection; Viola, Jones; IJCV 2001

http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf



General Detection Before Deep Learning

• Feature + classifier
• Feature

• Haar Feature
• HOG (Histogram of Gradient)
• LBP (Local Binary Pattern)
• ACF (Aggregated Channel Feature)
• …

• Classifier
• SVM
• Bootsing
• Random Forest



Traditional Hand-crafted Feature: HoG



Traditional Hand-crafted Feature: HoG



General Detection Before Deep Learning

Traditional Methods

• Pros
• Efficient to compute (e.g., HAAR, ACF) on CPU
• Easy to debug, analyze the bad cases
• reasonable performance on limited training data

• Cons
• Limited performance on large dataset
• Hard to be accelerated by GPU



Deep Learning for Object Detection

Based on the whether following the “proposal and refine” 

• One Stage
• Example: Densebox, YOLO (YOLO v2), SSD, Retina Net
• Keyword: Anchor, Divide and conquer, loss sampling

• Two Stage
• Example: RCNN (Fast RCNN, Faster RCNN), RFCN, FPN, 

MaskRCNN
• Keyword: speed, performance



A bit of History
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Modern Object detectors

Backbone Head

• Modern object detectors
• RetinaNet

• f1-f7 for backbone,    f3-f7 with 4 convs for head
• FPN with ROIAlign

• f1-f6 for backbone,  two fcs for head
• Recall vs localization

• One stage detector: Recall is high but compromising the localization ability
• Two stage detector: Strong localization ability

Postprocess

NMS



One Stage detector: RetinaNet

• FPN Structure

• Focal loss

Focal Loss for Dense Object Detection， Lin etc, ICCV 2017 Best student paper
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Two-Stage detector: FPN/Mask R-CNN

• FPN Structure

• ROIAlign

Mask R-CNN， He etc, ICCV 2017 Best paper



What is next for object detection?

• The pipeline seems to be mature

• There still exists a large gap between existing state-of-arts and product 
requirements

• The devil is in the detail
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Challenges Overview

• Backbone
• Head
• Pretraining
• Scale
• Batch Size
• Crowd
• NAS
• Fine-grained

Backbone Head
Postprocess

NMS



Challenges - Backbone

• Backbone network is designed for classification task but not for 
localization task

• Receptive Field  vs   Spatial resolution

• Only f1-f5 is pretrained but randomly initializing f6 and f7 (if applicable)



Backbone - DetNet

• DetNet: A Backbone network for Object Detection, Li etc, 2018, 
https://arxiv.org/pdf/1804.06215.pdf

https://arxiv.org/pdf/1804.06215.pdf


Backbone - DetNet
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Backbone - DetNet



Backbone - DetNet



Challenges - Head

• Speed is significantly improved for the two-stage detector

• RCNN - > Fast RCNN -> Faster RCNN - > RFCN

• How to obtain efficient speed as one stage detector like YOLO, SSD?

• Small Backbone

• Light Head



Head – Light head RCNN

• Light-Head R-CNN: In Defense of Two-Stage Object Detector, 2017, 
https://arxiv.org/pdf/1711.07264.pdf

Code: https://github.com/zengarden/light_head_rcnn

https://arxiv.org/pdf/1711.07264.pdf


Head – Light head RCNN

• Backbone

• L: Resnet101

• S: Xception145

• Thin Feature map

• L:C_{mid} = 256

• S: C_{mid} =64

• C_{out} = 10 * 7 * 7

• R-CNN subnet

• A fc layer is connected to the PS ROI pool/Align



Head – Light head RCNN



Head – Light head RCNN



Head – Light head RCNN

• Mobile Version

• ThunderNet: Towards Real-time Generic Object Detection,  Qin etc, Arxiv
2019

• https://arxiv.org/abs/1903.11752

https://arxiv.org/abs/1903.11752


Pretraining – Objects365

• ImageNet pretraining is usually employed for backbone training

• Training from Scratch

• Scratch Det claims GN/BN is important 

• Rethinking ImageNet Pretraining validates that training time is important 



Pretraining – Objects365

• Objects365 Dataset



Pretraining – Objects365

• Pretraining with Objects365 vs ImageNet vs from Sctratch



Pretraining – Objects365

• Pretraining on Backbone or Pretraining on both backbone and head



Pretraining – Objects365

• Results on VOC Detection & VOC Segmentation



Pretraining – Objects365

• Summary

• Pretraining is important to reduce the training time

• Pretraining with a large dataset is beneficial for the performance



Challenges - Scale

• Scale variations is extremely large for object detection



Challenges - Scale

• Scale variations is extremely large for object detection

• Previous works

• Divide and Conquer: SSD, DSSD, RON, FPN, …

• Limited Scale variation

• Scale Normalization for Image Pyramids, Singh etc, CVPR2018

• Slow inference speed

• How to address extremely large scale variation without compromising 
inference speed?



Scale - SFace

• SFace: An Efficient Network for Face Detection in Large Scale Variations, 
2018, http://cn.arxiv.org/pdf/1804.06559.pdf

• Anchor-based:

• Good localization for the scales which are covered by anchors

• Difficult to address all the scale ranges of faces

• Anchor-free:

• Able to cover various face scales

• Not good for the localization ability

http://cn.arxiv.org/pdf/1804.06559.pdf


Scale - SFace
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Scale - SFace

• Summary:

• Integrate anchor-based and anchor-free for the scale issue

• A new benchmark for face detection with large scale variations: 4K Face



Challenges - Batchsize

• Small mini-batchsize for general object detection

• 2 for R-CNN, Faster RCNN

• 16 for RetinaNet, Mask RCNN

• Problem with small mini-batchsize

• Long training time

• Insufficient BN statistics

• Inbalanced pos/neg ratio



Batchsize – MegDet

• MegDet: A Large Mini-Batch Object Detector, CVPR2018, 
https://arxiv.org/pdf/1711.07240.pdf

https://arxiv.org/pdf/1711.07240.pdf


Batchsize – MegDet

• Techniques

• Learning rate warmup

• Cross-GPU Batch Normalization



Challenges - Crowd

• NMS is a post-processing step to eliminate multiple responses on one object 
instance

• Reasonable for mild crowdness like COCO and VOC

• Will Fail in the case when the objects are in a crowd



Challenges - Crowd

• A few works have been devoted to this topic

• Softnms, Bodla etc, ICCV 2017, http://www.cs.umd.edu/~bharat/snms.pdf

• Relation Networks, Hu etc, CVPR 2018, 
https://arxiv.org/pdf/1711.11575.pdf

• Lacking a good benchmark for evaluation in the literature

http://www.cs.umd.edu/~bharat/snms.pdf
https://arxiv.org/pdf/1711.11575.pdf


Crowd - CrowdHuman

• CrowdHuman: A Benchmark for Detecting Human in a Crowd, 2018, 
https://arxiv.org/pdf/1805.00123.pdf, http://www.crowdhuman.org/

• A benchmark with Head, Visible Human, Full body bounding-box

• Generalization ability for other head/pedestrian datasets

• Crowdness

https://arxiv.org/pdf/1805.00123.pdf
http://www.crowdhuman.org/


Crowd - CrowdHuman



Crowd-CrowdHuman



Crowd-CrowdHuman

• Generalization

• Head

• Pedestrian

• COCO



Conclusion

• The task of object detection is still far from solved

• Details are important to further improve the performance

• Backbone

• Head

• Pretraining

• Scale

• Batchsize

• Crowd

• The improvement of object detection will be a significantly boost for the 
computer vision industry



广告部分

• Megvii Detection 知乎专栏

Email: yugang@megvii.com




